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1. Introduction 

1.1 Purpose 
The purpose of this paper is to offer a distilled summary of transformations of graphical models that 

have been expressed in SysML diagrams, from Use Cases through Sequence Diagrams. Model 

transformations using a mathematically based relational orientation method have been taken from 

[1] and are summarized in Section 2. The figures are under copyright but are used with permission. All 

figure numbers in this paper are taken from the original source for clarity.  

In its mission to develop mathematically based model transformations for OMG standards, the 

Mathematical Formalism DSIG has drawn from concepts in OMG standards such as Model Driven 

Architecture [2] complemented by an extensive body of non-normative references in Section 3.2 of 

UPR 1.0 [3], recently published research [4], and SysML related publications such as [5-7].  

1.2 Context 
The model transformations presented in this paper reflect the achievements of more than a decade 

of research with industrial end users of MBSE including but not limited to Jaguar Land Rover, Rolls-

Royce, and BAE Systems. These transformations mark the practical completion of the 2nd objective for 

system architects in the Math DSIG mission statement [https://www.omg.org/maths/].  

The next objective of the DSIG focuses on expressing the underlying mathematical formalisms for 

MBSE via OMG model-based standards. Details are proposed in Section 3. With previous success in 

the standardization of relational transform through the adoption of UPR 1.0, it is envisioned that the 

goals of the OMG Mathematical Formalism DSIG are achievable. However, to ensure success, we 

believe that engagement with authoritative communities beyond the OMG is essential. These 

communities include for example, the International Council on Systems Engineering (INCOSE) and the 

International Organization for Standardization (ISO).  

A link has already been established with INCOSE via the Architecture Working Group (AWG) of the 

INCOSE UK Chapter, whose programme of work aims to clarify and formalize architecture concepts 

and improve architecting methods. In addition to contributing to international standards, the group 

and its members have published a variety of practitioners guides and an introductory book [8]. Current 

activities include workstreams focused on formalization through modelling, and this work is being 

supported by the authors of this paper, who are contributing their foundational research [4] to the 

endeavor. A contextual summary of the work of the AWG was provided in a keynote address at the 

CSER 2022 conference [9]. 

1.3 Definition of Key Terms 
In 2020 [4] the authors of this paper published the results of several years of research and engagement 

with the ISO. The purpose of the 2020 paper was to first offer definitions of key terms used in the 

current ISO standards for systems and software engineering [10, 11] that had a consistent 

mathematical basis. These were necessary for the mathematical specification of an architecture 

definition technical process. 

Building on [4], Dickerson and Ji [1] offered further analysis of the terms and comparative discussions 

with alternative definitions. These details and be found in [1] and [4] for the terms Structure, 

Architecture, System, and Model. For the term Semantic Structure, the concept had been introduced 

as early as 2013 but not elaborated in detail until 2016 in an IEEE conference paper [12]. 

The reader is cautioned that the use of language in these terms is mathematically oriented. The usage 

is similar to software engineering but for this reason there are subtle differences with the object-
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oriented usage of fundamental terms such as class, object and relation. With this in mind the following 

four definitions are offered without further motivation or explanation. 

Structure is junction and separation of the objects of a collection defined by a property of 

the collection or its objects.  

 

Architecture is structural type in conjunction with consistent properties that can be 

implemented in a class of structure of that type.  

 

In first order model theory, a Model is a relational structure for which the interpretation of a 

sentence in the Predicate Calculus becomes valid (true). 

 

A System is a set of interrelated elements that comprise a whole, together with an 

environment. 

 

Semantic Structure is a structure whose objects are semantic types. 

Each of the semantic structures used in Section 2 will be the ‘clean’ structure of an object-oriented 

diagram in UML/SysML such as a Use Case Diagram, Activity Diagram, or a Sequence Diagram. 

However, for the sake of simplicity and clarity, domain knowledge from a tutorial on an air traffic 

control system [1] will be interpreted into the semantic structures to create domain structures. The 

underlying model definition and transformation process employed in Section 2 does not depend on 

the knowledge details of the domain structures. 

1.4 Relational Orientation 
Overview. Relational orientation is an architectural technique for abstraction that expresses the 

concepts of a system in terms of relations among elements. In first order model theory, a relational 

structure is a collection of mathematical relations (in the sense of set theory). Concepts are expressed 

formally using the (first order) predicate calculus. A first order model is defined to be a relational 

structure that is the image of an injective mapping of one or more sentences in the first order 

predicate calculus (a sentence being a fully quantified well-formed formula). In other words, the 

model ‘faithfully’ realizes the sentences. Relational orientation is then a technique that supports the 

modelling of systems. 

The relational orientation on systems supports a general systems methodology that employs a 

principle of model specification and relational transformation for the purpose of system description, 

analysis, and design. In relational orientation, the specification of a model associated with a system is 

the specification of:  

• Entities associated with the system  

• Sentences (declarations) about the entities  

• Modeling elements to instantiate the sentences  

• A semantic structure on the modeling elements  

• Interpretations of the sentences into the semantic structure  

Entities are abstractions that admit logical or physical existence. The entities of the system can include 

elements, classes (of elements), and properties of the system e.g., functionality. Note that there may 

be entities associated with the system which are not part of it, e.g., elements of the operating 
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environment and context of the system. The sentences are the basis for system specification. A system 

model is valid when the interpretation of each sentence it represents is true within the semantic 

structure of the model.  

Refer to UPR 1.0 [3] Section 6.2.1 and the references there for further details and explanation. 

Application to object-oriented graphical models. A graphical representation of a model is a collection 

of vertices and edges for encoding the semantic information captured by the sentences. The modeling 

elements in this case are the vertices. The edges, which represent relationships between vertices, are 

represented as pairs of vertices. The underlying structure is a (discrete) graph and therefore also has 

a matrix representation. It is clear then that the object-oriented graphical models of UML and SysML 

can be represented by matrices. 

A simple example is in the figure below. The Design Objectives 𝑦1, 𝑦2, and 𝑦3 could be three activities 

from an Activity Diagram in which the first two must be performed before the third one. This defines 

two binary relations which are represented as two ordered pairs (𝑦1, 𝑦3) and (𝑦2, 𝑦3) based on the 

usual (row, column) notation for cells in the matrix (M). If the entities of the Target Model 𝑥1, 𝑥2, and 

𝑥3 are three system elements; and the transformation matrix (Q) is the functional allocation of 𝑦1 to 

𝑥1 , 𝑦2  to 𝑥2 , and 𝑦3  to 𝑥3 then the relations in the matrix (M) are transformed into the matrix (N). 

 

Figure 6-1 Simple example of a Transformational Frame (Q) in matrix form [3] 

The transformation is computed according to the formula, 

(𝑦𝑖 , 𝑦𝑗) ∈ 𝑴 with (𝑦𝑖 , 𝑥𝑘), (𝑦𝑗 , 𝑥𝑙) ∈ 𝑸 implies (𝑥𝑘 , 𝑥𝑙) ∈ 𝑵 

The Relational Oriented Systems Engineering Technology Tradeoff and Analysis (ROSETTA) framework 

is a matrix representation of the relational orientation on systems. The figure above is a simple 

example of how it can be applied to the object-oriented graphical models of UML and SysML. ROSETTA 

provides a facility for interpretation of concepts between system architects and systems (and 

software) engineers, among other things. The name of the (mathematical) framework bears an 

intentional similarity to the Rosetta stone which provided the means to interpret between the Greek, 

Egyptian and Hieroglyphics demotic languages.  

Integrated model of architecture and system. Figure 4.11 from [1] provides a logical model of an 

integration of the definitions in Section 1.3 for architecture and system. More precisely, it is a semantic 
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structure that can be populated with domain knowledge. The graphical nature of the structure 

exposes the binary predicates (relations) of the terms in the definitions of architecture and system. 

Because the interpretation of (predicate) sentences into relational structures is a first order model, 

the semantic structure in figure 4.11 becomes the basis for defining models of a system of interest 

and the relational transformations between them. This will be exploited extensively in the next 

section. 

  
©Figure 4.11 Integrated model of architecture and system [1] 

2. Model Types and Transformations 
Object-oriented diagrams in SysML provide a collection of model types for defining the models of a 

system of interest and transformations between them. The ‘clean’ structure (i.e., without domain 

knowledge) of an object-oriented diagram in UML/SysML expresses a model type. Taking a relational 

orientation, ROSETTA provides a method for a model definition and transformation process that does 

not depend on the knowledge details interpreted into the semantic structures. However, for the sake 

of simplicity and clarity, domain knowledge from a tutorial on an air traffic control system [1] will be 

interpreted into the semantic structures to create domain structures.  

The object-oriented model types used in this section are based on: the Use Case Diagram, the Activity 

Diagram, Class or Block Diagrams, and the Sequence Diagram. There is an abundance of well-known 

literature with examples and guidance for the drawing of diagrams. Friedenthal [6] and Delligatti [7] 

are two popular examples. The methods of these two books generally fall into the category of object-

oriented systems engineering.  

The methods for transforming between the diagrams as first order models is one of the primary 

concerns of ROSETTA [3] and is demonstrated in detail in the tutorial chapters of the book by 

Dickerson and Ji [1]. The methods in [1] and [3] fall into the category of relational-oriented systems 

engineering. The feasibility and practicality of the relational approach has been demonstrated in 

multiple deliveries of post graduate systems engineering modules as well as government sponsored 

research and commercialization projects. Refer to Annex A-4 of [1] for a distilled summary. 

Comparison of the object and relational oriented approaches is beyond the scope of this paper. 
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In the remainder of the section, the sequence of ordered parings of models and transformations 

between the models is a realization of the mathematically defined Architecture Definition technical 

process in [4]. It follows a ‘top-down’ approach for the sake of logical flow but in practice transitions 

between two ordered pairings of models can be sequenced in whatever manner is practical.  

2.1 Functionality to Behavior 
This subsection shows how to transform object-oriented models beginning with system functionality 

represented by Use Case Diagrams and concluding with the specification of use case description tables 

that map to Activity Diagrams. 

 

©Figure 5.5 Specification of system functionality [1] 

The representation of system functionality by a Use Case Diagram is actually a transformation of a 

model of the actors in the system environment into properties of the system. Figure 5.5 [1] illustrates 

a transformation of an external view of the system boundary into use cases. Associations between 

actors in the environment and (functional) properties of the system (as a black box) are based on 

interactions.  
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©Figure 5.6 First-level functional decomposition [1] 

Functional decomposition can be accomplished by specifying included use cases. The source model in 

Figure 5.6 [1] is taken exactly as specified in the Use Case Diagram. If the functionality represented by 

a use case is decomposed into lower level functionalities, then the inclusion relation can represent 

the decomposition. Thus, in the figure,  

Use Case 1 → [(Use Case 1, Use Case 1.1); (Use Case 1, Use Case 1.2)] 

Each inclusion relation creates an ordered pair but there is no implication of ordering between the 

pairs of inclusions.  

Also in the figure, there is no decomposition of the functionality represented in Use Case 2. The 

semantic transformation then acts on this use case as an identity mapping:  

Use Case 2 → Use Case 2  

Note that in these first two examples of model specification and transformation, the figures that 

represent the process are for the semantic structures themselves with no reference to domain 

knowledge. In the examples in the remainder of Section 2, domain knowledge will be added in order 

to help with visualization of the process. 
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©Figure 5.7 Specification of Use Case description [1] 

When the functionalities in the use cases are decomposed to a level that is actionable, they can be 

associated with actions that form the basic flow of actions through the system. This is the basis for an 

Activity Diagram. Rather than transform from the functional decomposition, it will be useful to make 

a direct mapping of the included use cases (when they are actionable) into a structured table that is 

commonly known as a Use Case Description. This table is a sematic structure. 

Figure 5.7 [1] depicts such a mapping for the Air Traffic Control System (ATCS) that is the subject of 

the tutorial chapters of [1]. When domain knowledge is interpreted into Use Case 1, it becomes 

‘Manage Air Traffic’. There are three included use cases in the tutorial and they each are actionable: 

Use Case 1.1: Track Aircraft 

Use Case 1.2: Assess Flight Path 

Use Case 1.3: Manage Aircraft 

The source model in Figure 5.7 [1] can be revised to reflect the three actionable included use cases. 

These are then mapped to the three actions that form the basic flow of actions through the system. 

The table represents the processes of the ATCS in a baseline scenario in which the system would 

operate under intended conditions. 
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©Figure 5.8 Mapping of Use Case description into basic flow of actions [1] 

The information in a Use Case description table is sufficient without further interpretation for mapping 

into an Activity diagram that shows the flow of actions for the actors and the system. This is depicted 

in Figure 5.8 [1]. The Activity diagram is for the ATCS (as a black box system) and a compliant aircraft 

(the actor). As previously noted, the interpretation of Use Case 1 led to three included use cases, each 

of which are actionable. Thus the diagram on the right side of the figure will need a third Basic Action 

when domain knowledge is included. 

2.2 Functional Allocation to Subsystem Interoperation 
This subsection shows how to transform object-oriented models beginning with functional allocation 

of basic behaviors represented by Activity Diagrams into Class or Block Diagrams, and concludes with 

the specification of interoperations that can be synthesized into Sequence Diagrams. 

 

©Figure 6.10 Functional allocation to the system set [1] 

The Activity diagram for the ATCS (as a black box system) is further elaborated (i) to show interactions 

with an ATC Controller as well as a Compliant Aircraft, and (ii) define system flows of the two ATCS 

components, an Air Traffic Radar (ATR) and an Air Traffic Management System (ATMS). The integrated 

model of architecture and system provides a logical structure for understanding the interrelation 

between the first level system hierarchy represented by a Class or Block Diagram and the system 

behavior represented by an Activity Diagram. 
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Figure 6.10 [1] depicts how functional allocation can be accomplished with engineering precision by 

associating operations of the system elements with actions to be performed by the elements. 

©Figure 6.11 Specification of system structure model [1] 

As depicted in the integrated model of architecture and system in Figure 6.11 [1], the interrelations 

between the 1st level system hierarchy, the system environment, and the relational structure must be 

understood before intended (as well as inherent) interactions between them can be specified. In the 

system structure model, the flow of actions will be the basis of specifying intended interactions (e.g., 

message exchange) between elements.  

   
©Figure 6.12 Synthesis of essential architecture [1] 

As depicted in Figure 6.12 [1], in order to specify the system architecture, the Sequence Diagram is 

the object-oriented model type that provides an interrelational structure within which to realize the 

myriad of properties defined in the previous diagrams. In terms of object-oriented model elements, 

the model transformations are realized by the following associations: Class → Objects → Lifelines; 

Operations → Function Calls. Synthesis and normalization will also be needed. 

It is challenging to map the transformation and synthesis in general terms but the example from the 

ATCS tutorial makes clear the details of how the associations are being realized. These details are 

depicted in Figure 6.13 [1]. 
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©Figure 6.13 Details of the synthesis transformation [1] 

The figure provides details of the synthesis for creating the ATCS Sequence diagram. The actions in 

the Activity diagram in Figure 6.7 [1] of the tutorial have been associated with the class operations 

that enable them. The associated flow at the subsystem level of the ATCS represents the internal 

processes of the ATCS as a system. This flow is now seen to progress downwards through the lifelines 

of the Sequence diagram. 

2.3 Functional Decomposition to Alternative Behaviors 
The basic behaviors represented by initial Activity Diagrams must be extended to accommodate 

alternative scenarios. This subsection returns to the Use Case diagram and shows how to transform 

the object-oriented representations to extend the basic behaviors represented by the Activity 

Diagrams. Control structures must be defined or revised to accommodate the integration of system 

behaviors across the scenarios. This requires the ability to combine fragments and create objects in a 

family of Sequence Diagrams. 
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©Figure 7.8 Iterative functional decomposition for alternative behavior [1] 

The definition of alternative behaviors begins with extensions of the basic functionality to 

accommodate alternative scenarios. Similar to the included use cases for functional decomposition, 

extended use cases provide a representation that supports modelling of alternative behavior. Specific 

conditions must be met at the extension point in the base use case before the extended use case is 

invoked. The model specification and transformation are depicted in Figure 7.8 [1]. 

 

©Figure 7.9 Specification of integrated behaviors [1] 

The structure of the Use Case Description table has provisions for the information and associations 

contained in Figure 7.9 [1]. If the extended use case is actionable it can be associated with an action 

in the alternative Activity Diagram. The extension point in the base use case can be associated with a 

decision node. This will create alternative flows in the Activity Diagram. 

 

mailto:mathsig-chair@omg.org


OMG mathsig/2022-09-01 

13 
Please contact mathsig-chair@omg.org regarding permissions. 

 

©Figure 7.10 Synthesis of essential architecture with alternative behaviors [1] 

The complexity of scenario integration can be mitigated by integrating an alternative control structure 

for each scenario individually into the basic Sequence Diagram. This can evolve the basic control 

structure into combined fragments using “if, then; else” statements and object creation. A family of 

alternative diagrams linking each extended use case (associated with an alternative scenario) 

eventually to an alternative interrelation structure (represented by a Sequence Diagram) can then be 

specified. Figure 7.10 [1] depicts the transformation for the tutorial example. 

3. Future Work 
The communities contributing to the development of MBSE have for the past two decades focused on 

modelling languages, tools, and to some extent methodologies. For example, a significant number of 

challenges identified in the joint MBSE initiative by INCOSE and OMG have been addressed at various 

levels of satisfaction through the evolution of standardized languages such as the SysML. 

However, it has been observed that in the practical application of MBSE, models are often developed 

without either explicit acknowledgement or exploitation of mathematical foundations, and the 

benefits of mathematical precision are either not considered or only considered post model 

development. An example is using mathematics to demonstrate confidence in the validity and 

accuracy of models from different modelling teams. This is akin to and as erroneous as treating critical 

specialist disciplines like system safety as a ‘bolt-on’ post design item to address their specialist 

concerns.  

Therefore, we propose that the upcoming works of the Mathematical Formalism DSIG should be 

focused on the following objectives: 

1. raising OMG awareness of research results within MBSE communities that establish the 

benefits of applying mathematical methods and formalisms to support MBSE practices. 

2. evolving the model transformation approach presented in this paper to specify formal 

endogenous and exogenous transformations, thereby enabling consistent model 

development and model synchronization. 
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3. advancing the formalisms in this paper to address emerging challenges in the integration of 

digital engineering and MBSE. A collaboration between the Math DSIG and the Ontology 

PSIG is considered a critical step for this mission and is planned.  

4. collaborating with tool providers in the implementation of model transformations in 

commercially available tools and standardization of the underlying formalisms via OMG. 

Successful adoption and deployment of UPR 1.0 demonstrated the feasibility of this specific 

task. 

The details of the above future work will be informed by deriving prioritized needs for the 

mathematical formalisms, based on continued collaboration with OMG groups and consultation with 

key players from relevant industries on established engineering practices. The collaboration and 

consultation will become a regular modus operandi to ensure benefits of the formalisms can be 

established, evidenced and realized in practice. It is our goal that with successful completion of the 

above objectives, MBSE practices will shift from being ‘largely unaware of mathematical foundations’ 

to ‘consciously exploiting mathematics throughout the practice of modelling’.  
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