
© SOFTEAM 2012

Improving existing Java code with a UML

modeling environment

Copyright SOFTEAM 2012

www.softeam.fr

www.modeliosoft.com

Abstract
The title of this white paper may appear somewhat surprising. How can a UML modeling

environment be beneficial to an existing application where no prior model exists?

Despite the advantages of modeling an application before coding it, most Java developers are not

using modeling tools for their developments. The “Improve your Java development efficiency with

Modelio and UML" whitepaper demonstrates the advantages that a high-level modeling environment

can bring. But what can be done when development has already been realized or begun without

using modeling techniques? Are there still advantages to using a modeling tool?

We already know that modeling environments can generate Java code from a UML model. We have

already published an article showing that a model-driven approach can bring significant gains in

productivity and quality through the use of mature modeling tools providing high-performance

code/model consistency management services (see "Improve your Java development efficiency with

Modelio and UML"). This approach requires that models be designed and built first, before

embarking upon Java programming.

And yet a new generation of tool is now freeing developers from this "constraint" (which is how it is

seen by many Java developers). It is no longer necessary to first design and build a model, in order to

take advantage of the productivity and quality gains that a modeling environment can bring.

This white paper will show how the Modelio modeling environment can enable you to improve

existing code, enhance its documentation, and assist in the understanding of the architecture of a

http://www.softeam.fr/
http://www.modeliosoft.com/
http://www.modeliosoft.com/en/component/docman/doc_download/178-improve-your-java-development-efficiency-2-en.html
http://www.modeliosoft.com/en/component/docman/doc_download/178-improve-your-java-development-efficiency-2-en.html

 Improving existing Java code with a UML modeling environment 2/16

© SOFTEAM 2012

Java application. These services constitute a first level of assistance, support and automation, which

allow you to go even further with more elaborate use cases, such as the modernization of an

application, the reverse documentation and reverse design of an existing application, the analysis of

existing application architecture, and so on.

Modelio is a system and software modeling tool, which has been available in an open source version

since October 2011 (www.modelio.org). Modelio provides a wide range of modeling features, such as

the integrated support of all current modeling standards (UML, BPMN, SOA, ...), and the generation

and reverse of Java code. A commercial version of Modelio, developed and published by Modeliosoft

(www.modeliosoft.com), also exists, providing enterprise-dedicated solutions, with support services

and additional tool features.

Reversing Java code in Modelio
Modelio has considerably enhanced its Java code reverse services, both in terms of efficiency and

precision. From ".jars" or Java sources, Modelio automatically produces a UML model that precisely

corresponds to the code in question. This model contains all the information needed to reproduce

the code, with absolutely no losses or omissions: the UML static model (classes, packages, properties,

…), the Java-specific extensions (stereotypes) and the textual code extensions (for example, method

code) associated with the model elements concerned. From this model, exactly the same code can

be generated.

Figure 1 – UML model of a reversed Java application, with equivalent reproduced code

Modelio automatically builds UML static diagrams. The "Create/Update automatic diagrams"
context menu command is used to tell Modelio to build the class or package diagrams from the

http://www.modelio.org/
http://www.modeliosoft.com/

 Improving existing Java code with a UML modeling environment 3/16

© SOFTEAM 2012

designated element. The models built enable you to focus on a class or package, and to summarize
what is used and by whom.

At this point, you now have a model in which you can carry out all the operations useful to the Java
code.

Producing improved Javadocs
Javadocs are very often used to document Java sources. Users of a Java library, for example,

systematically use the associated Javadocs to find out which services are available, and how to use

them. With Modelio (only in the Modeliosoft Java Solution), the "Generate Javadoc" context

menu command lets you automatically produce the Javadocs associated with the model. These use

the contents of standard Javadocs, and complete them by inserting the UML diagrams associated

with documented elements. This improves the legibility of Javadocs, provides additional information

(for example, who uses a given package), and facilitates browsing simply by clicking on elements in

diagrams.

 Figure 2 – Javadoc generated on the "Menu" class

Updating class utility methods

Java class utility methods, such as toString(), equals() and hashCode(), are commonplace and very

frequently used by many of an application’s classes. IDEs like Eclipse generate them automatically on

demand. Eclipse produces code that is based on the attributes of the class. However, these attributes

very often evolve during the development of an application, rendering the content of these

 Improving existing Java code with a UML modeling environment 4/16

© SOFTEAM 2012

generated methods obsolete. This creates a large number of bugs in applications, as developers do

not always remember to update this content.

Modelio (only in the Modeliosoft Java Solution) automatically generates these utility methods, and

can maintain them when classes evolve, thereby guaranteeing permanent consistency.

In the case of Java code reverse, Modelio retrieves the code of these methods, and considers, by

default, that it should not modify manual code. A dedicated macro is provided to extract the utility

methods that are to be updated, and to proceed with regeneration.

Analyzing existing Java application architecture

Beyond the different types of dependency defined by the UML standard (for example "import,

access, package-import, …"), the Modelio modeling environment carries out an analysis of all

dependencies of all possibles kinds between classes, and creates a summary in the form of a kind of

dependency named "blue link". This can be a Java "import" link, a class typing an operation

parameter, an association, an inheritance link, an interface implementation, and so on. These

dependencies are summarized at class and package levels. In this way, a dependency between

packages in Modelio summarizes all the dependencies that exist between the classes of the origin

package and the classes of the destination package. This provides a precise yet simple view of the

Java architecture at package and summarized dependency levels, making it easier for architects to

get to grips with the complex graph of dependencies that exist between the classes of a Java

application. Packages are clearly materialized in Modelio, constituting a means of visualizing the

overall structure of an existing application, and of restructuring it into layers that respect the usual

rules of modularity and autonomy, while limiting circular dependencies. In Figure 3, 461 different

dependencies between a large number of classes are summarized by 4 "blue links" between 5

different packages. Each "blue link" indicates what it summarizes, and Modelio enables users to

examine summarized links in detail, where necessary.

This analysis, carried out here on packages, can be run at a finer level on Java classes, where

incoming and outgoing dependencies to other classes are viewed.

 Improving existing Java code with a UML modeling environment 5/16

© SOFTEAM 2012

Figure 3 – Modelio architectural summary

Modelio links editor: Browsing the analyzed application

The Modelio links editor is a powerful tool, providing different views of an application according to

what an architect wants to see. Options allow users to browse the application’s inheritance links,

interface implementation links, import links, "blue link" summary links, associations, or any

combination of links desired. Figures 4 and 5 present two different browsable graphical views. The

links editor presents the number of dependency levels chosen by the architect.

Figure 4 – Browsing inheritance links between classes

 Improving existing Java code with a UML modeling environment 6/16

© SOFTEAM 2012

Figure 5 – Browsing (resumed) dependencies between packages

This browsing mode provides a much more operational and realistic view of complex applications

than the simple hierarchical package/class view, making it easier to quickly understand an

application. The links editor works in both directions (links originating from an element, and links

arriving at an element). This means that you can carry out impact analyses on an existing application

(What is impacted if such and such a class or package is modified? Who uses such and such a class or

interface, and via which channel?).

Restructuring and modernizing an application

Once this Modelio-facilitated analysis has been completed, the architect can quickly reorganize an

application. Firstly, he/she can easily modify the organization into packages in order to better

structure classes, without impacting the final code and its execution. He/She can then regenerate an

application and define a production in the form of reorganized libraries (.jar), and can also generate a

production line (ANT, implementation of Maven, …) that reflects the new structure.

Should the architect want to operate in a more intrusive way, he/she can change the realization

principles and underlying libraries, in order to obtain a more modern application. To do this, he/she

can either use the "JPA" or "Hibernate Designer" Modelio modules, or create specific modules for a

modernized architectural "framework". The "Pattern Designer" Modelio module can also be used to

define and systematize new design patterns, which can be generalized across the application (see

"Pattern Designer in action (3mn 45s)").

Finally, the development and modernization of the application can continue in "model-driven"

development mode, even where the application was realized through direct Java programming.

http://archive.modeliosoft.com/video/pattern_designer.swf

 Improving existing Java code with a UML modeling environment 7/16

© SOFTEAM 2012

Maintenance

The use of a model-driven approach helps combat the widespread syndrome of "architectural

decay". Very often, the developers responsible for maintenance updates are not those who carried

out the initial development of the application, nor those who designed the system. If these

developers dive headlong into the code, they risk introducing sporadic corrections into different

parts of the code in order to correct a bug, thereby altering and creating exceptions within

architectural principles, and progressively ruining the entire architecture of the application. By

starting out with the support of a model, everyone has an overview, which will help avoid this type of

problem.

Conclusion
The volume of existing Java code to maintain and build on is considerable, and it quickly becomes

extremely difficult for those in charge of maintenance to keep up in terms of their knowledge and

their capacity to carry out global restructuring or correction operations. For this reason, help is

needed from tools able to provide overviews, handle large volumes of code and update what already

exists. The use of models has proven to be extremely useful to abstraction, comprehension and

production.

With the approach provided by Modelio, models do not need to have been used since project start-

up. The Modelio approach is applied to Java code throughout all development phases, thereby

ensuring smooth communication between developers and architects. Modelio can be used to

document, assist comprehension of and build upon and restructure what already exists.

Useful Links

 www.modelio.org: The Modelio open source community website. Modelio can be downloaded

here.

 www.modeliosoft.com: The website of the original author of Modelio, where commercial

solutions are distributed.

 http://www.modeliosoft.com/modelio-store.html: The Modelio Store, where Modelio modules

(extensions) such as Java Designer can be downloaded.

 http://www.jcp.org/en/jsr/detail?id=901: Java language specification.

 http://www.omg.org/mda/specs.htm#MDAGuide: Model-driven technologies and standards.

